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Three-Body Problem in the Theory of the
Dielectric Constant

B. Cichocki®? and B. U. Felderhof'
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We study the corrections to the Clausius—Mossotti formula for the dielectric
constant of a disordered system of polarizable spherical particles. Previously we
have derived an exact clusier expansion for the correction terms. Here we study
the three-body correction in detail. We derive an explicit expression for the
integrand of the three-body cluster integral for a system of polarizable point
dipoles.
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1. INTRODUCTION

In this paper we study nonpolar dielectrics consisting of a disordered array
of identical spherical particles immersed in a uniform background with
dielectric constant &,. The particles may be inclusions with a spherically
symmetric dielectric profile, or they may be spheres with a polarizable
point dipole at their center. In a previous article, ) referred to as I, we have
shown, following earlier work by Felderhof er al,*™* that the effective
dielectric constant ¢* of such a system may be written in the form

e*—g 4mna/3e, (1)
e*+ 26, 1— (4nna/3e)(A+ p) '

where n is the number density and « is the dipole polarizability of a
particle. The denominator on the right-hand side represents the correction
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to the Clausius—Mossotti formula. In I we have derived exact cluster
expansions for the dimensioniess coefficients A and u of the form

1=% A, p=Y o (12)
s=2 s=2

where A, and u, are given by absolutely convergent cluster integrals over
the solution of a dielectric problem involving s spheres. In this paper we
study the three-body terms A; and u; in detail.

In Sections 2-4 we describe the model and summarize our previous
results. In Section 5 we give detailed expressions for the so-called nodal
connectors appearing in the two- and three-body cluster integrals. In
Section 6 we derive the explicit expressions for the integrands of the three-
body cluster integrals for the case of the polarizable point dipole model.
The paper is concluded with a discussion.

2. MICROSCOPIC DESCRIPTION

We consider a dielectric system consisting of N nonoverlapping spheri-
cal inclusions embedded in a uniform background of dielectric constant ¢, .
The inclusions are identical, each of radius a, and are characterized by a
spherically symmetric dielectric constant. For a fixed configuration of inclu-
sions in which they are centered at R, R,,.., R, the diclectric constant at
a field point r is then

£, fr—R;[>a

elr—R,)) |r-Rj<a UTP=M D

e(L,..., N; r)={

The basic equations for the electric field E and the dielectric displacement
D are Maxwell’s electrostatic equations

V.-D=4np,, VxE=0, D=¢E (2.2)

where p,=p(r) is a fixed charge distribution, independent of the con-
figuration of the inclusions. The applied field E(r) is the solution of Egs.
(2.2) with ¢ a uniform dielectric constant ¢;. We define the induced
polarization, relative to the medium in the absence of inclusions, via the
relation

D=¢E+4xaP (2.3)

We define the scattering operator M(1) for a single inclusion, isolated
in the uniform medium and centered at R,, from the equation

P(r)zj M(R,; 1, 1) Eo(r') dr (2.4)
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where E(r) is an arbitrary applied field. We note that the operator M(1)
is localized about R, in the following sense:

M, (L;r,r)=0 if r—Ryl>a or |[IF—Ri>a (2.5)
It can be shown that the kernel is symmetric,
My (Lir,x')=My(1;r', 1) (2.6)

The localization property (2.5) follows from the fact that for a single
inclusion the induced polarization is nonvanishing only within a sphere of
radius @ about R;, and from the symmetry (2.6). The dipole polarization
of the inclusion is given by

o1 =ﬂ M(1L;r, r') dr dr’ = (0| M(1)|0) 2.7)

where the second equality defines a useful shorthand notation.

It is often convenient to consider a simplified model of polarizable
point dipoles. In this model the dielectric constant is ¢; everywhere, but
each inclusion has a polarizabie point dipole with polarizability « at its
center. In this case the induced polarization is defined by

P(r)= 2 p,0(r—R;) (2.8)

where p; is the dipole moment at the center of inclusion j, and the dielectric
displacement D is defined by (2.3). The scattering operator for a single
inclusion is given by

M(1;t, r') =21 3(r—R,) 8(r' —R,) (2.9)

For N inclusions the dipole moment p; is proportional to the field acting
at R;, so that the N dipole moments are given by the set of coupled
equations

p=o [EO(R]-)+ ¥ Tjk°pk], j=1,, N (2.10)
k#j

where T, =T(R;~R,) is the dipole tensor defined from the tensor field

Ty =117 (2.11)

81r3

Our explicit calculation in this paper will be limited to the point dipole
model.
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3. EFFECTIVE DIELECTRIC CONSTANT

In this section we recall the definition of the effective dielectric
constant ¢* of a macroscopically large system of randomly distributed
inclusions. Moreover, we recall the exact expressions for the coefficients 4
and p occurring in (1.1).

We describe the disordered system of inclusions by a distribution
function W(l,.., N). The probability distribution is assumed normalized to
unity and symmetric in the labels 1,..., N. The partial distribution functions
are defined by

N
(N—s)!

(1., s) = j---deHI--.dRN w(l,.., N) (3.1)
We assume that on average the inclusions are distributed uniformly and
isotropically in a volume Q with density n = N/Q. In our final expressions
we take the thermodynamic limit N — o0, £ — o at constant n = N/£.

Averaging over the probability distribution W(1,.., N), we obtain the
average polarization (P ) and the average electric field (E). These average
fields vary only on a length scale large compared to the average distance
between inclusions. Eliminating the applied field Eq(r), we find that the
averages are related by

CPr)> = [ X(r, ) CE(F) ar (32)

with a linear susceptibility kernel X(r, r’). In the bulk of the system this
kernel becomes translationally invariant in the thermodynamic limit, and
dependent only on the difference r—r’. For a macroscopic field {E(r))
which varies slowly over the range of the kernel we may then replace (3.2)
by the local relationship

(P)=yx*<E> (3.3)

where the effective susceptibility y* is given by the integral of the suscep-
tibility kernel X(r —r’). The effective dielectric constant is given by

g% =g, + dmy* (3.4)

In I we have shown that ¢* may be expressed exactly by a generaliza-
tion of the Clausius—Mossotti formula, as given by (1.1), with dimen-
sionless coefficients A and u which each may be expressed in terms of a
cluster expansion, as written in (1.2). The coefficient 4 is given by

&

A=-——Tr(0|M(1) S(1) M(1)|0) (3.5)
dnna
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where we have used the notation of (2.7) and the trace is taken with respect

to the Cartesian components of the tensor. The reaction field operator S(1)
is given by the cluster expansion‘!

S(1)= ). S,(1) (3.6)

where S (1) is defined as an average scattering operator for s inclusions.
Similarly, the coefficient y is given by

"L Tr [ dR; (0IM(1) S,0(1,2) M(2)]0) (3.7)

,u=4n

where the operator S, (1, 2) is the nonoverlap contribution to the short-
range connector S(1, 2). The latter has again a cluster expansion")

S(1,2)= Y, 5,(1,2) (38)
s=2
and may be written
S(1,2)=8,,(1,2)—6(2a— [R; —R,|)G, (3.9)

where 6(x) is the step function and Gy is the Green function for the
uniform medium with dielectric constant ¢,. The explicit form for G acting
on a given vector field V(r) is

m«wm=—%vm

+f e 3(r—r) V(r)r—r)— (r—r)’ V(r') (3.10)
3

g, jr—r'|°

where the subscript 0 on the integral indicates that the integral is carried
out with the exclusion of an infinitesimally small sphere centered at r. In
(3.5) and (3.7) the center R, of inclusion 1 may be taken to be at the origin
without loss of generality.

4. TWO- AND THREE-BODY CONTRIBUTIONS

In this section we specify the two- and three-body contributions to the
coefficients 4 and u in more detail. First we recall the explicit expressions
for the two- and three-body contributions to the reaction field operator
S(1) and the short-range connector S(1, 2).
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The two-body contribution to S(1) is given by
Sz(l)=Jd2n(2)k(1,2)N11(1,2) 4.1)

where k(1,2)=g(1,2) is simply the normalized two-particle distribution
function defined by n(1, 2) =n(1) n(2) g(1, 2), and N,(1, 2) is a two-body
nodal connector defined in terms of the two-body dielectric problem. The
three-body contribution to S(1) is given by

53(1)=fd2 d3 n(2) n(3)[k(1, 2, 3) N, (1, 2, 3)

+k(1,2]1,3) Ny (1, 211, 3)] (4.2)
with the chain correlation functions
k(1,2,3y=g(1,2,3),  k(1,2]1,3)=g(1,2,3)—g(1,2)g(1,3) (4.3)

where g(1,2,3) is defined by n(l,2,3)=n{1)n(2)n(3) g(1,2,3). The
nodal connectors in (4.2) are defined in terms of the three-body dielectric
problem and will be described in more detail in the next section. We merely
note that they correspond to scattering sequences involving three inclusions
in which the first and the last scatterer have the label 1.

Similarly, the two-body contribution to the short-range connector
S(1, 2) is given by

S,(1,2) = g(1, 2)[N»(1, 2) - Go ] + A(1, 2) G, (4.4)

where A(1, 2)= g(1, 2) — 1. The three-body contribution to S(1, 2) is given
by

Si(1, 2)=Jd3 n(3)[k(1,2,3)N,(1,2,3)+k(1,2]2,3) N5(1,2]2, 3)

+k(1,2,3) Nio(1, 3, 2) + A(1, 311, 2) N1, 311, 2)
+4(1,312,3) Nix(1, 313,2)] (4.5)

The chain correlation functions k are defined in analogy to {(4.3) and the
operators N, are again various nodal connectors.

The two- and three-body contributions to the coefficients A and u may
now be found by substitution of the above expressions into (3.5) and (3.7).
The two-body contributions are combined conveniently in the form
Ay + ti,. This contribution has been studied in detail by several authors™ ™
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and will not be discussed further here. The three-body contribution A, may
be written as

dy=125(1,2,3)+ A5(1, 2|1, 3) (4.6)

corresponding to the two terms in (4.2). Similarly, the three-body contribu-
tion u; may be written as a sum of five terms

Us =,U3(1, 27 3)—}—/13(1, 2|27 3)+u3(15 3a 2)
+us(1, 311, 2) 4+ ps(1, 313, 2) (4.7)

corresponding to the decomposition in (4.5).

In (1.1) we need the sum A;+ pu; and it is convenient to divide the
terms in (4.6) and (4.7) into two groups. From (3.5), (3.7), (4.2), and (4.5)
we find

A5(1,2,3)+ pu5(1, 2, 33+ u5(1, 3, 2)
=—81—3n J dR, dR; g(1,2,3) Tr(0| M(1)[N,;(1, 2, 3) M(1)
4o
+N»(1, 2,3y M(2) + Ny5(1, 2, 3) M(3)]10) (4.8)

In the last term we have used the symmetry of g(1,2,3) to perform an
interchange of labels. Similarly, we find

As(L, 211, 3) 4+ ua(1, 212, 3) 4+ ua(1, 311, 2) + p5(1, 313, 2)

2!
=4m2nde2 dR, k(1,2]1,3)
x Tr(O| [M(1) N, (1, 2) + M(2) N5, (2, 1) ] M(1)
x [Ny1(1, 3) M(1) + Ny5(1, 3) M(3)110) (4.9)

Here we have used that a three-body nodal connector with a slash fac-
torizes into a product of two-body nodal connectors with an intermediate
scatterer. For example,

Ni5(1, 212, 3)=N5(1,2) M(2) N, (2, 3) (4.10)

The integral in (4.8) is the more difficult to evaluate, since the nodal con-
nectors appearing there involve the solution of a three-body scattering
problem. In the next section we investigate the three-body nodal connectors
in more detail.
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5. NODAL CONNECTORS

In this section we describe the nodal connectors which have appeared
in the expressions of the preceding section. We consider first the nodal con-
nector N,(1,2). It is associated with the sum of scattering sequences
[121]7+[12121]+ --- describing repeated scatterings between the two
inclusions 1, 2, with the condition that the first and last scatterer be 1.
Explicitly the connector is

Nyi(1,2)=6(1) GoM2)[I - GoM(1) GoM(2)17! GoO(1)  (5.1)
where the 8 operator is defined by
B(L;r, e y=0(a—|r—R,|)é(r—r") (5.2)

It localizes the field points r and r’ to the volume of inclusion !.
Similarly, the connector N,,(1, 2) corresponds to the sum of scattering
sequences [12]+[1212]+ ---, and 1s given explicitly by

Ny5(1,2)=0(1) Go[I — M(2) GoM(1)G,o] " 6(2) (5.3)

Next we consider the three-body connectors. Some of these have a
slash indicating a nodal point. A label j is a nodal point of the scattering
sequence [12---], if at that point the label j may be replaced by j|j such
that all labels to the left of the slash have only the label j in common with
those on the right. The three-body connectors with a nodal point factorize
as in (4.10). The nodal connectors N (1, 2, 3), N,,(1, 2, 3), and N,(1, 2, 3)
correspond to ‘scattering sequences without nodal points. In particuiar, the
connector N (1,2, 3) corresponds to the sum of scattering sequences
[1231]+[12321]+ ---, the conditions being that, reading from left to
right, the first and last scatterer be 1, that the scattering sequence contain
no nodal point, and that the labels 1,2, 3 first appear in this order.
Similarly, the connector N ,(1, 2, 3) corresponds to the sum of scattering
sequences [12312]+[121312]+ ---, with the same conditions as
before, except that now the last scatterer must be 2. Finally, the connector
N;5(1, 2, 3) corresponds to the sum of scattering sequences [12313]+
[121323]+ --- with the same conditions as before, except that the last
scatterer must be 3.

In I we have expressed the connectors N;(1, 2, 3) in terms of a sum
of sequences of two-body connectors. This corresponds to a resurnmation
of scattering sequences similar to the binary collision expansion familiar
from the kinetic theory of gases.”) However, we have found in explicit
calculations that a different expression, in which no resummation is carried
out, is to be preferred.
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Quite generally, for N scatterers we may write the N-body T-matrix®
in the form

N)= _Z Ty(l,... N) (5.4)

where T,(1,.., N) may be represented by a sum of scattering sequences
with the condition that the first scatterer be j and the last one be & . This
may be expressed by the relation

Ty(1y N)=0(j) T(1,..., N) 0(k) (5.5)

It is convenient to introduce a connection operator V(l,.., N) by the
equation®
T(1,.., N)=My1,..., N)

4 My(1, oy N) V(1 N) Mo(1,.., N) (5.6)

where M(1,..., N) represents the sum of isolated scatterers

Mo(1,... N)= 3, M()) (5.7)

with M(j) = T(j). In analogy to (5.4) we may write V(1,.., N) as a sum of
connectors

’ ] N) Z m(l’ "y (5'8)
The separate terms are glVCIl by
Vin(Lewy N)=0()) GoB(m)(1 = ,,) + 0(j) Gy Y, TwGob(m) (59)
k#j
I1#m

The operators Tu(1,.., N) and Vj(l,.,N) may be regarded as
elements of an N x N matrix. We introduce the N x N operator matrix

M(1) 0
M = M) . (5.10)
0 M(N)
and similarly
gW) =
0 (1) Go8(2) 8(1) G,0(3) 6(1) G,0(N)
8(2) Go0(1) 0 E
: 0 O(N-1) G,06(N)
O8(N) G,6(1) B(N) G, 0(N-1) 0

(5.11)
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The corresponding operator matrix Z ) is defined by
g—(N):ﬂ(N)[](N)_g(N)%(N)]fl (5_12)

The operator T,(1,.., N) is the jk element of this matrix. In analogy to
(5.6), we also introduce the N x N operator matrix ¥ by

TN = N 4 Ny (W) gy (N) (5.13)
From (5.12) we find
YW = gV _ gy (Mg (N)] ! (5.14)

The connector V(1,..., N) is the jk element of this matrix.
The two-body nodal connectors may be identified as

Nu(l: 2)=V11(1, 2), le(l, 2)=V12(1, 2) (5-15)

where the boldface notation emphasizes the Cartesian tensor character. The
three-body nodal connectors may be expressed in two alternative ways. In
the first formulation we simply sum all scattering sequences which con-
tribute and find

Nyi(1, 2, 3)=N (1, 2) M(1)[N, (1, 3) M(1)
+N5(1,3) M(3)] GoM(2) V,,(1, 2, 3)
+ N (1, 2) M(2)[N,,(2, 3) M(2) V,(1, 2, 3)
+ N,3(2,3) M(3) V5,(1, 2, 3)]
N,(1,2,3)=N,,(1,2) M(1)[N,, (1, 3) M(1) V,,5(1, 2, 3)
+N1(1,2,3) M(3) Vis(1, 2, 3)]
+ N2(1,2) M(2)[N» (2, 3) M(2)
+N,3(2,3) M(3)] GoM(1) V,5(1, 2, 3)
Ns(L 2,3) =N, (1, 2) M(1)[N, (1, 3) M(1)
+N3(1L,3)M3)] GoM(2) V;5(1, 2, 3)
+ Np(1, 2) M(2)[N4,(2, 3) M(2)
+ NLi(2, 3) M(3)]1 GoM(1) V;5(1, 2, 3) {(5.16)
In the second formulation we first sum over arbitrary scattering sequences

and then exclude those specified by the definition of the nodal connectors.
Thus, we obtain
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Ny(1,2,3) =V, (1, 2,3) = Ny (1, 2) — N,y (1, 3)= Nyy (1, 2) M(1) Ny, (1, 3)
— [N (L, 3) M(1)+ Nys(1, 3) M(3)] GoM(2) V,4(1, 2, 3)
No(1, 2, 3)=V5(1, 2, 3) = Npo(1, 2) — Nyo(1, 2) M(2) Nos(2, 3)
— [Ny, (1, 3) M(1) + Nys(1, 3) M(3)] Go[6(2)
+M(2) Vas(1, 2, 3)]
N (L2, 3) =V ,5(1, 2, 3) — Nys(1, 3)
—Nyi(1,2) M(1) N1, 3) = N (1, 2) M(2) Nog(2, 3)
“INL(1, 3) M(1) + Nys(1, 3) M(3)] GoM(2) Vas(1, 2, 3)
(5.17)

Summing and symmetrizing with respect to the labels 2 and 3 we find

N (1,2,3)+ Ny (1, 3,2)+ Nyyp(1, 2, 3)
+N(1,3,2)+ Ng3(1, 2, 3) + Ni3(1, 3, 2)
=V (1,2,3)+V;5(1,2,3)+V;3(1,2,3)
=V, {(1,2)=V(1,3)—=V»(1, 2) =V 5(1, 3)
—V,(1,2) M(1)[V,(1, 3)+ V51, 3)]
=V, (1, 3)) M()[V(1, 2) + V5(1, 2)]
=V (1, 2) M(2)[V(2, 3) + V23(2, 3)]
—V5(1, 3) M(3)[V1,(2, 3) + V33(2, 3)] (5.18)

This last expression will be used in the following.

6. POLARIZABLE POINT DIPOLE MODEL

The expressions for the nodal connectors derived in the preceding
section may in principle be used to evaluate the integrals in (4.8) and (4.9).
Here we specify the integrals in more detail for the polarizable point dipole
model. For this model the two-body nodal connectors have been given
explicitly in (1.8.2) and (1.8.3).

We consider first the integral in (4.9). To express the result in a
concise way, we introduce the dimensionless variables
a’ a’ a’ g a’

=23 9=7235 r=—3, z=—— (6.1)
R}, R3; R @
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By straightforward calculation we find that the integral in (4.9) is given by
/13(17 2| 1’ 3) + /’L3(1a 2I2’ 3) +ﬂ3(1, 3 I’L 2) +#3(19 3 [ 3’ 2)

=Z;t%zde2dR3k(1,2ll,3)F(p,r, 9,;2) (62)
Here 0, is the angle between the vectors R, and R,;, and the function
F(p,r,0,;z)is given by

(3 cos? 0, —1)z* +4pr
(z+p)z—2p)z+r)(z—2r)

F(p,r,0,;2z)=3pr (6.3)

In the limit of large z, corresponding to small a, the integral in (6.2)
reduces to the three-body integral of Kirkwood? and Yvon.'V
The integral in (4.8} is of the form

J:J.ddeR3 g(1,2,3)f(1,2,3) (6.4)

where by isotropy and translational invariance the functions g(1, 2, 3) and
f(1,2,3) depend only on the variables R,,, R;, and cos §,. We may
therefore transform to

a0 A0 1
J=87r2L JZ f1g(1,2,3)f(1,2,3)R§2R§3dR12de3d(cosal) (6.5)

The integrand may be symmetrized with respect to the labels 2 and 3. Of
course, the distribution function is already symmetric, so that we may use
the symmetrized sum of nodal connectors given in (5.18). The integral in
(6.5) may be cast in the form

N

with the convention that g(1, 2, 3) vanishes when the triangle condition on
the variables R;,, R;;, and R,; is not satisfied. Hence, we may also sym-
metrize the integrand with respect to the labels 1, 2, and 3. This completely
symmetrized form is of advantage in the polarizable point dipole model.

To find the matrix element appearing in (4.8) for the polarizable point
dipole model, it suffices to solve the problem of three coupled induced
dipoles in a uniform applied field. That is, we must solve the set of coupled
equations

J g(1,2,3)/(1,2,3) Ry R;3 Ry dR 1, AR5 dRyy  (6.6)

2a
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pi=a[Eq+ Ty, pr+Ti5°ps]
Pr=0[Eg+ Ty pi+ Ty ps] (6.7)
ps=oa[Eo+ T3 pi + T30 p2]

where the dipole tensor is given by (2.11). We may solve the last two
equations for p, and p; in terms of E, and p,, and substitute into the first
equation. We may simplify the problem further by choosing the z axis
perpendicular to the plane containing the three centers. We are then left
with two coupled equations for the components p,, and p,,, and with one
equation for p,,. The solution allows us to find the matrix elements of the
operators V;(1, 2, 3) in (5.18).
As a final result, we find

)*3(19 27 3)+#3(17 27 3)-{'-/13(1, 3’ 2)

_ 2nn
T 348

—F(p,r,0y;2)—F(q, p, 05;2) —F(r, ¢, 055 2)
—H(p,z)—H(q, z)— H(r,z) = 31R, Ri3R»; dR,, dR 3 dR,;  (6.8)

p f Lw LOO g(1,2,3)[Gy(1,2,3)+ G.(1,2, 3)

with dimensionless functions G, G,, F, and H. The function G,(1, 2, 3) is

given by

Xy
G.(1,2,3)=N,/D, (6.9)
with the abbreviations

Ni=(z—plz—q)(z—7)

(6.10)
D=2 (p>+q*+r*)z+2pgr
The function G,,(1, 2, 3) is more complicated and is given by
9(ZP_Q)+N1D2+N2D1
G,.(1,2,3)= 6.11
o(1,2,3) 501D D (6.1)
with the abbreviations
No={(z+2p)(z+29)(z+ 2r)
D,=2z*—4(p*+q*+r*)z—16pgr
(6.12)

P=Az*+ B>+ Cz+D
Q=R+ 82+ Tz+ U
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where in turn
A= —(s;+5,+53)
B=3sp~(p+r)s;,—(qg+ p)s,—(r+q)s;
C=(2p*+ pr+2r’)s, + (24> + qp + 2p%)s,
+ 22 +rq+2g%)s;—2(p+q+1)51s

+ PC3 12+ GCy 03 10y 3 (6.13)
D =(9s, —2q2)61!23 +(9s, _2’”2)02,31 + (9s; ’2P2)03A12
R:2S123

8= prs, + qps, + rqs;
T= —4(p°cs 1o+ q°ci 2+ rcy31)
U= —9s1y
In the latter expressions we have used the abbreviations
sy=prsin’0,,  s,=gpsin’0,, s3=rgsin®
S123= 5 pqr(sin® 0, + sin? 0, +sin* 9,)
¢; =3 pgr(sin® 0,+ sin® 0, —sin? 6,) (6.14)
Here 0, is the angle between R,; and R,;, and 6, is the angle between R,
and R,,. Finally, the functions H in (6.8) are given by
6p>

Hp o) = =)

(6.15)

These functions arise from the two-body nodal connectors in the form
Tr(OIM(1)[N (1, 2) M(1) + N,5(1, 2) M(2)]1{0) = aH(p, z} (6.16)

We note that the subtracted terms in (6.8) make the integral absolutely
convergent.

7. DISCUSSION

We have studied the three-body cluster integrals 2, and pu,, as defined
in (1.1) and (1.2). Our final results for the polarizable point dipole model
are given in (6.2) and (6.8). Even for this simple model the expressions are
complicated and the final integrals can be evaluated only numerically. It
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would be of interest to compare the theoretical results with the electrostatic
spectra we have obtained in a computer experiment for a hard-sphere fluid
with polarizable point dipoles.('?)

For more realistic models, say uniform spherical inclusions with a
dielectric constant ¢,, the calculation of the three-body integrals will be
considerably more difficult. As a first step beyond the polarizable point
dipole model one might attempt to include quadrupoles. The quadrupole
contribution to the two-body cluster integrals has already been studied by
Felderhof and Jones."'*)

ACKNOWLEDGMENT

We thank the Deutsche Forschungsgemeinschaft for financial support.

RE

. Cichocki and B. U. Felderhof, J. Stat. Phys. 53:499 (1988).

. U. Felderhof, G. W. Ford, and E. G. D. Cohen, J. Stat. Phys. 28:135 (1982).

. U. Felderhof, G. W. Ford, and E. G. D. Cohen, J. Stat. Phys. 28:649 (1982).

. U. Felderhof, G. W. Ford, and E. G. D. Cohen, J. Stat. Phys. 33:241 (1983).

. J. Jeffrey, Proc. R. Soc. Lond. A 335:355 (1973).

. D. Lee and C. N. Yang, Phys. Rev. 113:1165 (1959).

. H. Hauge and E. G. D. Cohen, J. Math. Phys. 10:397 (1969).

. G. Newton, Scattering Theory of Waves and Particles (McGraw-Hill, New York, 1966).
. U. Felderhof, Physica A 151:1 (1988).
. G. Kirkwood, J. Chem. Phys. 4:592 (1936).
. Yvon, Recherches sur la Théorie Cinétique des Liquides (Hermann, Paris, 1937).
. Cichocki and B. U. Felderhof, J. Chem. Phys. 90:4960 (1989).

. U. Felderhof and R. B. Jones, Phys. Rev. B 39:5669 (1989).

—_
D0 RN W

12

—
[



